Diyargroup.ru

Ремонт Строй
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Драйверы для светодиодов – все что нужно знать домашнему мастеру

Драйверы для светодиодов – все что нужно знать домашнему мастеру

Евгений Вахидов

LED-освещение экономно расходует электроэнергию, является компактным, ярким и весьма эффективным. Однако стоимость светодиодных лент и точечных светильников довольно высока и для того, чтобы получить значительный экономический эффект необходим как можно более длительный период эксплуатации. Для обеспечения долговечности этих устройств необходима организация правильного энергоснабжения, за которую отвечают драйверы для светодиодов.

Драйверы для светодиодов

Читайте в статье

Светодиодный драйвер своими руками для мощных светодиодов

Светодиодный драйвер своими руками для мощных светодиодов

Это одна из простейших схем, которую можно собрать своими руками из подручных материалов.

Q1 — N-канальный полевой транзистор (IRFZ48 или IRF530);

Q2 — биполярный npn-транзистор (2N3004, либо аналог);

R2 — 2,2 Ом, резистор мощностью 0,5-2 Вт;

Входное напряжение до 15 В;

Драйвер получится линейным и КПД определяется формулой: VLED / VIN

где VLED – падение напряжения на светодиоде,

VIN – входное напряжение.

Согласно законов физики чем больше разница между входным напряжением и падением на диоде и чем больше ток драйвера, тем сильнее греется транзистор Q1 и резистор R2.

VIN должно быть больше VLED на, как минимум, 1-2В.

Повторюсь, что схема очень простая и ее даже можно собрать простым навесным монтажом и она БУДЕТ работать без проблем.

Расчеты:
— Ток светодиода примерно равен: 0.5 / R1
— Мощность R1: мощность, рассеиваемая резистором, составляет приблизительно: 0,25 / R3. выберите значение резистора не менее двукратной рассчитанной мощности, чтобы резистор не раскалился.

Так, для тока светодиода 700мА:
R3 = 0,5 / 0,7 = 0,71 ом. Ближайший стандартный резистор — 0,75 ом.
Мощность R3 = 0,25 / 0,71 = 0,35 Вт. нам понадобится по крайней мере 1/2 ватта номинального резистора.

Читайте так же:
Включаю свет выключается розетка

Модификации схемы с дополнительным резистором и стабилитроном

Модификация схемы с дополнительным резистором модификация схемы с диодом зенера Модификация схемы с диодом Зенера

А теперь будем собирать светодиодный драйвер своими руками, используя некоторые модификации. Данные модификации имеют изменения касаемо ограничения напряжения первой цепи. Допустим, нам надо держать NFET (G-контакт) меньше 20 В и если мы желаем использовать источник питания выше 20 В. Данные изменения необходимы, если мы будем использовать с схемой микроконтроллер или подключать компьютер.

В первой схеме добавлен резистор R3, а во второй этот же резистор заменен на D2 — стабилитрон.

Если мы хотим установить напряжение G-pin примерно на 5 вольт — используйте стабилитрон 4,7 или 5,1 вольта (например: 1N4732A или 1N4733A).

Если входное напряжение ниже 10В, замените R1 на 22кОм.

Используя данные модификации можно получить возможность работы схемы с напряжением 60 В.

Используя данные модификации теперь можно преспокойно использовать микроконтроллеры, ШИМ или вообще подключаться к компьютеру.

Данные вещи рассматривать не буду. Но если заинтересует, то добавлю статью и такими схемами.

Как подключить светодиоды к драйверу — читайте тут.

Модификация схемы для «диммирования» светодиодов

модификация схемы с выключателем

Рассмотрим еще одну модификацию. Данный собранный драйвер для светодиодов своими руками позволит «диммировать» светодиоды. Вернее это не будет полноценным диммером. Здесь основную роль играют 2 резистора, которые рассчитаны таким образом, что при включении-выключении переключателя яркость диода будет меняться. Т.е. «по — русски — диммер с костылем». Но и такой вариант имеет право на существование. Калькуляторы для расчетов резисторов Вы всегда сможете найти на нашем портале и воспользоваться ими.

Кто-то скажет — что «можно использовать» подстроечный резистор. Могу поспорить — на такие малые величины, к сожалению, нет подстроечных резисторов. Для этого есть совершенно другие схемы.

Читайте так же:
Как провести интернет кабеля с розетками

Аналоговая регулировка яркости

Аналоговая регулировка яркости светодиодов заключается в подстройке тока светодиода. Проще говоря, это регулировка уровня постоянного тока светодиода. Аналоговая регулировка может выполняться с помощью подстройки резистора контроля тока RSNS или путем управления аналоговым напряжением на выводе DIM микросхемы. На рисунке 2 показаны эти два способа аналоговой регулировки.

Аналоговая регулировка с помощью подстройки RSNS

Из рисунка 2 видно, что изменение сопротивления RSNS приводит к соответствующему изменению тока светодиода при фиксированном опорном напряжении на выводе CS. Если бы можно было найти потенциометр, способный управлять высоким током светодиода, а также работать в диапазоне до 1 Ом, то это был бы практически осуществимый метод регулировки яркости светодиодов.

Аналоговая регулировка с помощью управления постоянным напряжением на выводе CS

Более сложным методом регулировки является прямое управление током светодиода посредством подачи напряжения на вывод CS. Источник напряжения обычно включают в цепь обратной связи, ток в которой формируется усилителем (см. рис. 2). Ток светодиода можно контролировать с помощью коэффициента усиления усилителя. С помощью цепи обратной связи можно реализовать токовую и тепловую защиту светодиода.

Недостатком аналоговой регулировки является то, что цветовая температура излучаемого света может меняться в зависимости от тока светодиода. В случае, когда цвет свечения светодиода является критически важным параметром или у конкретного светодиода наблюдаются заметные изменения цветовой температуры при изменении тока светодиода, регулировка яркости путем подстройки тока светодиода становится недопустимой.

Разновидности 12В стабилизаторов

В зависимости от конструкции и способа поддержания 12-ти вольтного напряжения выделяют две разновидности стабилизаторов:

  • Импульсные – стабилизаторы, состоящие из интегратора (аккумулятора, электролитического конденсатора большой емкости) и ключа (транзистора). Поддержание напряжения в заданном интервале значений происходит благодаря циклическому процессу накопления и быстрой отдачи заряда интегратором при открытом состоянии ключа. По конструктивным особенностям и способу управления такие стабилизаторы подразделяются на ключевые устройства с триггером Шмитта, выравниватели с широтно-импульсной и частотно-импульсной модуляцией.
  • Линейные – стабилизирующие напряжение устройства, в которых в качестве регулирующего устройства применяются подключаемые последовательно стабилитроны или специальные микросхемы.

Наиболее распространены и популярны среди автолюбителей линейные устройства, отличающиеся простотой самостоятельной сборки, надежностью и долговечностью. Импульсный вид используется значительно реже из-за дороговизны деталей и сложностей самостоятельного изготовления и ремонта.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

Читайте так же:
Выключатель света поворотный ретро

Зарядки и внешние БП

  • различные виды зарядных устройств; Зарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.

Параллельное подключение

Если от БП с напряжением, например, 5 В, необходимо зажечь несколько светодиодов, то их придется соединить между собой параллельно. При этом последовательно с каждым светодиодом нужно поставить резистор. параллельное подключениеФормулы для расчёта токов и напряжений примут следующий вид: формула расчета тока при параллельном подключении

Таким образом, сумма токов в каждой ветви не должна превышать максимально допустимый ток БП. При параллельном подключении однотипных светодиодов достаточно рассчитать параметры одного резистора, а остальные – будут такого же номинала.

Все правила последовательного и параллельного подключения, наглядные примеры, а также информацию о том, как нельзя включать светодиоды, можно найти в данной статье.

Правильный выбор контроллера

В процессе выбора стоит обращать внимание на входные параметры. Оно регламентируется производителями. Параметр указывается в технических данных прибора. Это значение обязано соответствовать напряжению ХХ батареи либо сумме напряжений ХХ нескольких солнечных блоков в последовательном соединении. Рекомендуется добавлять 20%-ный запас.

Общая расчетная мощность батареи подбирается не более, чем перемноженное значение напряжения системы и выходного тока. В этом случае тоже ставим запас в 20%. Если нет возможности самостоятельно провести расчеты, то стоит обратиться к специалистам в электротехнике.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector